
wird

The ParaNut Processor
Architecture Description and Reference Manual

Gundolf Kiefer, Alexander Bahle, Christian H. Meyer,
Felix Wagner, Nico Borgsmüller

Hochschule Augsburg – University of Applied Sciences
gundolf.kiefer@hs-augsburg.de

With contributions by:
Michael Schäferling, Anna Pfützner, Patrick Zacharias, Abdurrahman Celep,

Lukas Bauer

Version: v1.0-114-g23393c6b*

February 15, 2023

This work is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License. To view a copy of this license, visit
https://creativecommons.org/licenses/by-sa/4.0/.

Document History
Version Date Description
0.2.0 2015-02-19 Initial public release
0.2.1 2015-12-16 Add local CPU identification register, LL/SC instructions
0.3.0 2018-12-01 Change to RISC-V ISA
0.3.1 2020-11-16 Minor improvements
0.4.0 2020-02-08 Add User and Supervisor modes
0.4.1 2020-11-16 Minor improvements
0.4.2 2021-05-26 Minor improvements
1.0.0 2021-11-22 Major rework of the manual, avoiding duplication of general

RISC-V information;
Switch to Git-based versioning

1.0.0 2022-07-04 Add experimental MMU and Linux support
1.0.47 2022-12-02 Add Rust language setup
1.0.0 2023-01-17 Add Config Creator user manual
1.0.114 2023-02-15 Rewoked CSR Section, added instructions to install GDB and

OpenOCD and reworked debugging chapters in appendix

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 ii

Contents

1. Introduction 1

2. The ParaNut Architecture 2
2.1. Instruction Set Architecture . 2
2.2. Structural Organisation . 2
2.3. Execution Modes and Capabilities . 4
2.4. SIMD Vectorization . 5
2.5. Multi-Threading . 5

3. Instruction Set Reference 7
3.1. Privilege Levels . 7
3.2. Instructions . 8

3.2.1. Conditional Branches . 8
3.2.2. Load and Store Instructions . 8
3.2.3. Memory Ordering Instructions . 8
3.2.4. Control and Status Register Instructions 8
3.2.5. Trap-Return Instructions . 8
3.2.6. ParaNut Instructions . 9

3.3. Control and Status Registers (CSR) . 10
3.3.1. Terminology and Conventions for CSR Field Specifications 10
3.3.2. Machine-Level Control and Status Registers 10

3.3.2.1. Machine Vendor ID Register (mvendorid) 13
3.3.2.2. Machine Architecture ID Register (marchid) 13
3.3.2.3. Machine Implementation ID Register (mimpid) 13
3.3.2.4. Hart ID Register (mhartid) 13
3.3.2.5. Machine Status Register (mstatus) 14
3.3.2.6. Machine ISA Register (misa) 14
3.3.2.7. Machine Interrupt Registers (mip and mie) 14
3.3.2.8. Machine Trap Vector Base Address Register (mtvec) . . . 15
3.3.2.9. Machine Trap Delegation Registers (medeleg and mideleg) 15
3.3.2.10. Machine Cause Register (mcause) 15
3.3.2.11. Hardware Performance Monitor 15
3.3.2.12. Machine Timer Registers (mtime and mtimecmp) 15

3.3.3. Supervisor Control and Status Registers 17
3.3.3.1. Supervisor Status Register (sstatus) 18
3.3.3.2. Supervisor Cause Register (scause) 18
3.3.3.3. Supervisor Address Translation and Protection (satp)

Register . 18
3.3.4. Unprivileged/User Control and Status Registers 18

3.3.4.1. Cycle Registers (cycle/cycleh) 19

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 iii

Contents

3.3.5. ParaNut -Specific Control and Status Registers 19
3.3.5.1. ParaNut CPU group select (pngrpsel) 19
3.3.5.2. Supervisor Trap Vector Base Address Register (stvec) . . 19
3.3.5.3. ParaNut CPU enable register (pnce) 20
3.3.5.4. ParaNut CPU linked mode register (pnlm) 21
3.3.5.5. ParaNut CoPU exception select register (pnxsel) 21
3.3.5.6. ParaNut Cache control register (pncache) 21
3.3.5.7. ParaNut number of CPUs (pncpus) 22
3.3.5.8. ParaNut CPU capabilities register (pnm2cp) 22
3.3.5.9. ParaNut CoPU exception pending (pnx) 22
3.3.5.10. ParaNut CoPU trap cause ID (pncause) 23
3.3.5.11. ParaNut CoPU exception program counter (pnepc) 23
3.3.5.12. ParaNut cache information register (pncacheinfo) 23
3.3.5.13. ParaNut number of cache sets register (pncachesets) . . 24
3.3.5.14. ParaNut clock speed information register (pnclockinfo) . 24
3.3.5.15. ParaNut memory size register (pnmemsize) 24
3.3.5.16. ParaNut exception CPU enable (pnece) 25
3.3.5.17. ParaNut machine timer timebase (pntimebase) 25
3.3.5.18. ParaNut core ID register (pncoreid) 25

3.3.6. Control and Status registers without implementation 26
3.4. Exceptions . 27

4. Libparanut 30

5. Operating Environments 31
5.1. Bare Metal and newlib . 31
5.2. FreeRTOS . 31
5.3. Linux . 31
5.4. Rust . 32

5.4.1. Why Rust with Paranut? . 32
5.4.2. Working with Rust . 32
5.4.3. Build the Project . 32

5.4.3.1. Working without Cargo Enviroment 33
5.4.3.2. Working with Cargo Enviroment 33

5.4.4. The main Program Example . 35
5.4.4.1. Print out Hello ParaNut 35
5.4.4.2. Working without Cargo Enviroment 36
5.4.4.3. Working with Cargo Enviroment 36
5.4.4.4. Using the Simulator . 37

6. Tools 38
6.1. ParaNut : Config Creator - User Manual 39

6.1.1. Starting page . 39
6.1.2. Beginner mode . 41
6.1.3. Expert mode . 42
6.1.4. Overview page . 44

Bibliography 45

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 iv

Contents

A. Appendix 46
A.1. Building software for the ParaNut processor 46

A.1.1. Run the application in the SystemC simulation 49
A.2. Installing GDB . 49
A.3. Installing OpenOCD . 50
A.4. Using GDB with the SystemC simulation 51
A.5. Using and debugging the hardware . 53
A.6. Integrating your own hardware modules . 56

A.6.1. AXI compatible modules . 56
A.6.2. Extending the ParaNut architecture/hardware 56

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 v

1. Introduction
The goal of the ParaNut project is to develop an open, scalable and practically applicable
multi-core processor architecture for embedded systems. Scalability is given by supporting
parallelism at thread and data level based on multiple processing cores while keeping the
design of the individual core itself as simple as possible.

ParaNut introduces a unique concept for SIMD (single instruction, multiple data) vec-
torization. Whereas SIMD extensions for workstation processors or embedded systems
frequently contain specialized instructions leading to an inherently bad compiler support,
SIMD code for the ParaNut can be programmed in a high-level language according to a
paradigm very similar to thread programming.
The instruction set is kept compatible to the RISC-V specification. Hence, the RISC-V

GCC tool chain and libraries/operation systems (newlib, Linux in the future with some
necessary extensions) can be used with the ParaNut .
To date, the ParaNut project is still work in progress, and new contributors from in-

dustry and academia are welcome. An informal project overview including the implemen-
tation status and very promising benchmark results can be found in [1].

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 1

2. The ParaNut Architecture

2.1. Instruction Set Architecture
The ParaNut instruction set architecture is compatible with the RISC-V specification.
The RISC-V architecture is an open source load and store RISC architecture designed
with the purpose to support a wide spectrum of different chips from small microcontrollers
to server CPUs. [2]. Scalability is achieved by defining a minimalistic basic instruction
set (RV32I) together with optional extensions including a floating-point unit (FPU) or a
memory management unit (MMU). Furthermore, the basic architecture offers configura-
tion options such as different register file sizes or optional arithmetic instructions.

ParaNut processors implement all mandatory instructions according to the RV32I spec-
ification. Features unique to ParaNut require some additional ParaNut -specific instruc-
tions. These will be encapsulated in a small support library, so that they are still usable
without compiler modifications. For software development, the GCC tool chain from the
RISC-V project can be used without any modifications. A cycle-accurate SystemC model
can be used as an instructions set simulator. To date, an operating environment based
on the "newlib" C library allows to compile and run software both in the simulator and
on real hardware.

2.2. Structural Organisation
The general structure of ParaNut is depicted in Figure 2.1. The core contains one Central
Processing Unit (CePU) and a number of Co-Processing Units (CoPU). The CePU is a
full-featured CPU, whereas the CoPUs are CPUs with a more or less reduced functionality
and complexity. Depending on the mode of execution (see below), the CoPUs may either
be inactive (sequential code), execute a part of a vector operation, or execute a thread.
In the sequel, the term CPU refers to any of a CePU or a CoPU.
All the CPUs are connected to a central Memory Unit (MemU). The MemU contains

the cache(s) and means to support synchronisation primitives. It provides a single bus
interface to the main system bus, and independent read and write ports for each CPU. It
is optimized to support parallel accesses by different CPUs. In particular, multiple read
accesses to the same address can be served in parallel and run no slower than a single
access, and accesses to neighboring addresses can mostly be served in parallel. These two
properties are particularly important for the SIMD-like mode.
Each CPU contains an ALU, a register file and some control logic which together form

the Execution Unit (ExU). The Instruction Fetch Unit (IFU) is responsible for fetching
instructions from the memory subsystem and contains a small buffer for prefetching in-
structions. The Load-Store Unit (LSU) is responsible for performing the data memory
accesses of load and store operations. It contains a small store buffer and implements write
combining and store forwarding mechanisms as well as mechanisms to support atomic op-

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 2

CHAPTER 2. THE PARANUT ARCHITECTURE

Figure 2.1.: A ParaNut instance with 4 cores

erations.
The Execution Unit is designed and optimized for a best-case throughput of one in-

struction in two clock cycles (CPI≈2, CPI = "clocks per instruction"). This is slower than
modern pipeline designs targeting a best-case CPI value of 1. However, it allows to better
optimize the execution unit for area, since no pipeline registers or extra components for
the detection and resolution of pipeline conflicts are required. Furthermore, in a multi-
core system, the performance is likely to be limited by bus and memory contention effects
anyway, so that an average CPI value of 1 is expected to be hardly achievable in practice.
In the ParaNut design, several measures help to maintain an average-case throughput
very close to the best-case value of CPI≈2, even for multi-core implementations.
The design of the memory interface and cache organization is very critical for the scala-

bility of many-core systems. In a ParaNut system, the Memory Unit (MemU) contains the
cache, the system bus interface, and a multitude of read and write ports for the processor
cores. Each core is connected to the MemU by two independent read ports for instructions
and data and one write port for data. The cache memory logically operates as a shared
cache for all cores and is organized in independent banks with switchable paths from each
bank to each read and write port. Tag data is replicated to allow arbitrary concurrent
lookups. Parallel cache data accesses by different ports can be performed concurrently if
their addresses a) map to different banks or b) map to the same memory word in the same
bank. Furthermore, by using dual-ported Block-RAM cells, each bank can be equipped
with two ports, so that up to two conflicting accesses (i.e. same bank, different addresses)
are possible in parallel. Hence, even for many cores, the likelihood of contention can be
arbitrarily reduced by increasing the number of banks, which is configurable at synthesis
time.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 3

CHAPTER 2. THE PARANUT ARCHITECTURE

The cache can be configured to be 1/2/4-way set associative with configurable replace-
ment strategies (e.g. pseudo-random or least-recently used). The Memory Unit imple-
ments mechanisms for uncached memory accesses (e.g. for I/O ports) and support for
atomic operations. All transactions to and from the system bus are handled by a bus
interface unit, which presently supports the Wishbone bus standard, but can easily be
replaced to support other busses such as AXI.

2.3. Execution Modes and Capabilities
A CPU in the ParaNut architecture can run in 4 different modes:

Mode 0 (Halted): The CPU is inactive.

Mode 1 (Linked): The CPU does not fetch instructions, but executes the instruction
stream fetched by the CPU.

Mode 2 (Unlinked): The CPU fetches and executes its own instructions. Exceptions trig-
ger an exception of the controlling CePU and put this CPU into Mode 0.
The CePU can later put this CPU into Mode 2 again, and the code execution
continues as if the exception has been handled by this CPU.

Mode 3 (Autonomous): The CPU executes its own instructions. Exceptions and inter-
rupts can be handled by this CPU.

Typically, the CePU always runs in Mode 3. The mode of the CoPUs is controlled by
the CePU. Depending on the application, the CoPUs can be customized that they only
support a subset of the 4 modes. For example, if only SIMD vectorization and no multi-
threading is required, all the logic required for modes 2 and 3 can be stripped off. Now,
the CoPU does not require much more area than a vector slice of a normal SIMD unit
would. In general, a CoPU is customized for a capability level of m, meaning that all
modes ≤ m are supported.

• A Capability-1-CoPU only contains very little logic besides the ALU and the register
file. Hence, a ParaNut with only Capability-1-CoPUs does not require much more
area than a normal SIMD processor.

• A Capability-2-CoPU additionally contains an instruction fetch unit and eventually
one more read port to the Memory Unit (MemU) for it.

• A Capability-3-CoPU is basically a full-featured CePU. It contains logic to handle
interrupts and exceptions and has its own set of special registers. This is not needed
for multi-threading, but for multi-processing, where each CoPU is managed by the
operating system as an individual CPU.

A CPU with Capability ≥2 in Mode 0 will reset its IFU. Upon changing to Mode 2 or
higher the CPU starts executing at the reset vector address. This enables control of
Mode 2 CoPUs through software. Figure 2.2 illustrates the active/required hardware for
the 4 modes. The following sections briefly illustrate how SIMD vectorization or multi-
threading can be performed. Further informal explanations and examples can be found
in [1].

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 4

CHAPTER 2. THE PARANUT ARCHITECTURE

Figure 2.2.: ParaNut modes and required logic

2.4. SIMD Vectorization
In Mode 1, the CoPU performs exactly the same instructions as the CePU. This is the
SIMD mode. All registers of the CePU can be regarded as a slice of a big vector register.
Since all CPUs perform the same operation at a time, the memory bandwidth required for
instruction fetching is reduced considerably and equivalent to the bandwith of a single-core
processor.
From a software perspective, the code on a CoPU executes almost normally, just like

multi-threaded code. There is only a single, well-defined exception: Conditional branches
and jump instructions with variable target addresses are executed based on target address
determined by the CePU. In the C language, such critical instructions can be generated out
of “if” statements, “case” statements and loop constructs. As long as the conditions always
evaluate equally on all CPUs, SIMD code can be easily written using a standard compiler
and a thread-like programming model. Figure 2.3 shows an example of a vectorized
loop. The macros ’pn_begin_linked’ and ’pn_end_linked’ open and close a parallel code
section, respectively. Since the body of the “for” loop does not contain any conditional
branches and the loop end condition “n < 100” always evaluates equally on all CPUs,
this code is executable on an SIMD-based processor variant.

2.5. Multi-Threading
To perform simultaneous multi-threading, the CoPUs are put into Mode 2. In this mode,
all exceptions and interrupts are handled by the CePU. This is somewhat a limitation
compared to Mode 3, in which the CPUs operate more autonomously. However, Mode 2
is sufficient for all typical applications, in which multi-threading is used as an acceleration
measure.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 5

CHAPTER 2. THE PARANUT ARCHITECTURE

1 int a [100], b [100], s [100];
2

3 void add_arrays_sequential () {
4 for (n = 0; n < 100; n += 1)
5 s [n] = a[n] + b[n];
6 }
7

8 void add_arrays_parallel () {
9 int n, cpu_no;

10

11 // Activate 3 (=4−1) CoPUs in the "Linked" state and
12 pn_begin_linked (4);
13

14 // get the number of this CPU...
15 cpu_no = pn_get_cpu_no();
16

17 // performs 4 additions in parallel
18 for (n = 0; n < 100; n += 4)
19 s [n + cpu_no] = a[n + cpu_no] + b[n + cpu_no];
20

21 // End linked mode, deactivate the CoPUs...
22 pn_end_linked ();
23 }

Figure 2.3.: Example of a vectorized loop

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 6

3. Instruction Set Reference
This chapter contains the instruction set reference for the ParaNut achitecture.

3.1. Privilege Levels
The ParaNut supports several combinations of privilege levels as specified in the RISC-V
manual [3], which can be set in the global configuration setting CFG_PRIV_LEVELS. The
currently supported combinations are listed in Table 3.1 and can be configured by setting
the desired number of levels.

Number of levels Supported Modes Intended Usage
1 M Simple embedded systems
2 M, U Secure embedded systems
3 M, S, U Systems running Unix-like operating systems

Table 3.1.: Supported combinations of privilege modes. [3]

Note that user-mode exception and interrupt handling is currently not supported. If
supervisor mode is configured, a Memory Management Unit (MMU) is available. For
more details on the MMU, see [5].

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 7

CHAPTER 3. INSTRUCTION SET REFERENCE

3.2. Instructions
The ParaNut implements the RV32I base instruction set. It may be configured to addi-
tionally include the M and A extensions. For a full list of the corresponding instructions
please refer to the RISC-V Instruction Set Manual Volume I [2]. This chapter contains
additional implementation specific information on some instructions.

3.2.1. Conditional Branches
Currently no branch prediction is featured, branches as well as jumps stall the instruction
fetch until the condition and/or address is evaluated.

3.2.2. Load and Store Instructions
A ParaNut raises the appropriate address misaligned exception on misaligned loads and
stores. The trap is taken according to specification and the failing address is saved in mtval
for further handling. Misaligned stores do not cause any changes in memory. Misaligned
loads do not change the value of rd.

3.2.3. Memory Ordering Instructions
The ParaNut processor operates inorder and the write buffer of the Load Store Units is
emptied inorder so the FENCE instruction is currently implemented as a LSU flush and
the IFU buffer is also cleared.
For synchronization between a ParaNut processor and other hardware in the system

the special cache control instructions described in Section 3.2.4 can be used.

3.2.4. Control and Status Register Instructions
SYSTEM instructions are used to access system functionality that might require privileged
access and are encoded using the I-type instruction format. These can be divided into
two main classes: those that atomically read-modify-write control and status registers
(CSRs), and all other potentially privileged instructions.

3.2.5. Trap-Return Instructions
Information about these instructions can be found in the RISC-V Privileged Architecture
Instruction Set Manual [3]

ParaNut does not implement the N-Extension, meaning URET is not supported.
SRET is only available if S-mode is enabled.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 8

CHAPTER 3. INSTRUCTION SET REFERENCE

3.2.6. ParaNut Instructions
The ParaNut architecture uses the custom-0 (0x0B) major opcode for its custom instruc-
tions as suggested in the RISC-V ISA manual [2].

31 20 19 15 14 12 11 7 6 0

funct12 rs1 funct3 rd opcode
12 5 3 5 7
0 0 HALT 0 CUSTOM-0

offset[11:0] base CINV 0 CUSTOM-0
offset[11:0] base CWB 0 CUSTOM-0
offset[11:0] base CFLUSH 0 CUSTOM-0

0 0 CINVA 0 CUSTOM-0
0 0 CWBA 0 CUSTOM-0
0 0 CFLUSHA 0 CUSTOM-0

The HALT instruction halts the current CPU by switching to Mode 0. If executed on
the CePU it also halts all other CPUs in the system. Note that halting a mode 2 capable
CPU will cause the reset of its program counter to the reset address.

The CINV, CWB and CFLUSH instructions control the MemU cache. All of these
operate on the effective address obtained by adding register rs1 to the sign extended
12-bit offset. CINV just invalidates the cache line containing the effective address, while
CWB triggers a write back of the cache line to main memory. CFLUSH is the combination
of CWB and CINV. Similarly the CINVA, CWBA and CFLUSHA serve the same function
but execute it on the whole cache.

The CINV(A), CWB(A) and CFLUSH(A) instructions are also buffered in the LSU
write buffer and are non blocking. They can take an arbitrary amount of time to
complete. If you need the instruction to complete before continuing the execution
follow it with a ”fence” instruction to ensure the cache operation is fully executed.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 9

CHAPTER 3. INSTRUCTION SET REFERENCE

3.3. Control and Status Registers (CSR)
This section describes the Control and Status Registers (CSRs), which are either standard
machine or supervisor CSRs, or specific to the ParaNut architecture. The addresses used
are defined in the RISC-V Privileged Architecture Instruction Set Manual [3]. All registers
are 32 bits wide. Registers mentioned in Tables 3.4, 3.8, and 3.10 are readable only by
the CePU.
The descriptions, tables and figures in Sections 3.3.1, 3.3.2 and 3.3.3 are derived from

the RISC-V privileged ISA [3]. Clarifications or deviations from the specification are
added as comments.

3.3.1. Terminology and Conventions for CSR Field Specifications
Tables 3.2 and 3.3 list abbreviations frequently used in this chapter. A more detailed
description of the abbreviations may be found in Chapter 2.3 of the RISC-V Privileged
Architecture Instruction Set Manual [3]. Tables 3.4, 3.8, and 3.10 contain information
about the available CSRs and their access restrictions.

Abbreviation Description
WIRI Reserved Writes Ignored, Reads Ignore Values
WPRI Reserved Writes Preserve Values, Reads Ignore Values
WLRL Write/Read Only Legal Values
WARL Write Any Values, Reads Legal Values

Table 3.2.: Write mode abbreviations

Privilege Description
MRW Machine Mode Readable/Writeable
MRO Machine Mode Read-Only
URW User Mode Readable/Writeable
URO User Mode Read-Only
SRW Supervisor Mode Readable/Writeable
SRO Supervisor Mode Read-Only

Table 3.3.: Privilege abbriviations

3.3.2. Machine-Level Control and Status Registers
Table 3.4 lists all Control and Status Registers (CSR) implemented by the
ParaNut architecture. Unless mentioned otherwise, they are implemented according to
the RISC-V specification [3]. The following subsections describe the implementation-
specific details as they are implemented on a ParaNut . Note, that all registers listed in
this section are solely available on the CePU. Trying to access them from a CoPU raises

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 10

CHAPTER 3. INSTRUCTION SET REFERENCE

an Illegal Instruction exception. Because the address of the registers mtime, mtimeh,
mtimecmp and mtimecmph are configurable and memory-mapped, a fixed address is not
given.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 11

CHAPTER 3. INSTRUCTION SET REFERENCE

Number Privilege Name Description
Machine Information Registers

0xF11 MRO mvendorid Vendor ID.
0xF12 MRO marchid Architecture ID.
0xF13 MRO mimpid Implementation ID.
0xF14 MRO mhartid Hardware thread ID.

Machine Trap Setup
0x300 MRW mstatus Machine status register.
0x301 MRO misa ISA and extensions
0x302 MRW medeleg Machine exception delegation register.
0x303 MRW mideleg Machine interrupt delegation register.
0x304 MRW mie Machine interrupt-enable register.
0x305 MRW mtvec Machine trap-handler base address.

Machine Trap Handling
0x340 MRW mscratch Scratch register for machine trap handlers.
0x341 MRW mepc Machine exception program counter.
0x342 MRW mcause Machine trap cause.
0x343 MRW mtval Machine bad address or instruction.
0x344 MRW mip Machine interrupt pending.

Machine Counter/Timers
0xB00 MRW mcycle Machine cycle counter.
0xB02 MRW minstret Machine instructions-retired counter.
0xB03 MRW mhpmcounter3 Machine performance-monitoring counter.
0xB04 MRW mhpmcounter4 Machine performance-monitoring counter.

...
0xB08 MRW mhpmcounter8 Machine performance-monitoring counter.
0xB80 MRW mcycleh Upper 32 bits of mcycle, RV32I only.
0xB82 MRW minstreth Upper 32 bits of minstret, RV32I only.
0xB83 MRW mhpmcounter3h Upper 32 bits of mhpmcounter3, RV32I only.
0xB84 MRW mhpmcounter4h Upper 32 bits of mhpmcounter4, RV32I only.

...
0xB88 MRW mhpmcounter8 Upper 32 bits of mhpmcounter31, RV32I only.

Machine Counter Setup
0x323 MRW mhpmevent3 Machine performance-monitoring event selector.
0x324 MRW mhpmevent4 Machine performance-monitoring event selector.

...
0x33F MRW mhpmevent31 Machine performance-monitoring event selector.

Machine Timer Registers
- MRW mtime Machine timer register.
- MRW mtimeh Upper 32 bits of mtime.
- MRW mtimecmp Machine timer compare register.
- MRW mtimecmph Upper 32 bits of mtimecmp.

Table 3.4.: Currently defined standard RISC-V CSRs

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 12

CHAPTER 3. INSTRUCTION SET REFERENCE

3.3.2.1. Machine Vendor ID Register (mvendorid)

Returns a fixed value of 0 indicating a non-commercial implementation as defined in [3].

MXLEN-1 0
0 (Fixed)
MXLEN

Figure 3.1.: Vendor ID register (mvendorid).

3.3.2.2. Machine Architecture ID Register (marchid)

Returns a fixed value of 0, since the Architecture ID is not yet requested from the RISC-V
Foundation.

MXLEN-1 0
0 (Fixed)
MXLEN

Figure 3.2.: Machine Architecture ID register (marchid).

3.3.2.3. Machine Implementation ID Register (mimpid)

This register provides detailed Information about the ParaNut hardware revision as shown
in Figure 3.3. The ParaNut versioning scheme follows the very common Major, Minor,
Revision scheme. Additionally bit 0 represents a dirty flag, indicating if the hardware has
been modified.

31 24 23 16 15 1 0
Major Minor Revision Dirty

8 8 15 1

Figure 3.3.: Machine Implementation ID register (mimpid).

3.3.2.4. Hart ID Register (mhartid)

The mhartid CSR is an MXLEN-bit read-only register containing the integer ID of the
hardware thread running the code. The RISC-V specification defines a hart as a single
hardware thread. In the current ParaNut implementation, multiple hardware threads on a
single core are not supported. Therefore, the Hart ID Register is equivalent to pncoreid.
mhartid can only be accessed by the CePU, which means it always returns zero.

MXLEN-1 0
Hart ID
MXLEN

Figure 3.4.: Hart ID register (mhartid).

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 13

CHAPTER 3. INSTRUCTION SET REFERENCE

3.3.2.5. Machine Status Register (mstatus)

Implements the flags listed in Figure 3.5, which represent only a subset of mstatus in [3].
WPRI indicates that the bits are not yet implemented and should be preserved on writes
for forward compatibility reasons, as indicated in Table 3.2

31 23 22 21 20 19 18 17 13 12 11

WPRI TSR WPRI TVM WPRI SUM WPRI MPP[1:0]
9 1 1 1 1 1 5 2

10 9 8 7 6 5 4 3 2 1 0

WPRI SPP MPIE WPRI SPIE WPRI MIE WPRI SIE WPRI
2 1 1 1 1 1 1 1 1 1

Figure 3.5.: Machine-mode status register (mstatus) of the ParaNut .

3.3.2.6. Machine ISA Register (misa)

The misa CSR is a WARL read-only register reporting the ISA supported by the hart.
As the ParaNut is highly configurable, the Extensions filed may or may not report some
extensions. Table 3.5 shows the possibilities of configuration. MXL is fixed to 1 to indicate
32-bit support.

MXLEN-1 MXLEN-2 MXLEN-3 26 25 0
MXL[1:0] (WARL) WIRI Extensions[25:0] (WARL)

2 MXLEN-28 26

Figure 3.6.: Machine ISA register (misa).

Bit Character Fixed/Configuration Description
0 A CFG_EXU_A_EXTENSION=1 Atomic extension
8 I Fixed to 1 RV32I/64I/128I base ISA
12 M CFG_EXU_M_EXTENSION=1 Integer Multiply/Divide extension
18 S CFG_PRIV_LEVELS=3 Supervisor mode implemented
20 U CFG_PRIV_LEVELS≥2 User mode implemented
23 X Fixed to 1 ParaNut extensions present

Table 3.5.: Encoding of Extensions field in misa.

3.3.2.7. Machine Interrupt Registers (mip and mie)

These registers are read-write registers, but currently only the MTIP bit of the mip register
and the MTIE bit of the mie register are implemented according to [3].

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 14

CHAPTER 3. INSTRUCTION SET REFERENCE

3.3.2.8. Machine Trap Vector Base Address Register (mtvec)

Currently, the lowest two bits are fixed to zero, which indicates that all traps set the
program counter to BASE+4.

MXLEN-1 2 1 0
BASE[MXLEN-1:2] (WARL) Fixed to 0 (WARL)

MXLEN-2 2

Figure 3.7.: Supervisor trap vector base address register (stvec).

3.3.2.9. Machine Trap Delegation Registers (medeleg and mideleg)

These registers are only available if the configuration parameter CFG_PRIV_LEVELS is set
to 3, meaning supervisor mode is enabled.

3.3.2.10. Machine Cause Register (mcause)

After a trap occured, mcause contains one of the flags listed in Table 3.6. Note that
environment calls may only occur if the corresponding mode is configured.

MXLEN-1 MXLEN-2 0
Interrupt Exception Code (WLRL)

1 MXLEN-1

Figure 3.8.: Machine Cause register mcause.

3.3.2.11. Hardware Performance Monitor

The hardware performance monitor counters can be configured in the ParaNut at compile
or synthesis time through the configuration file. They can be fully disabled for minimal
space requirements. Reads will then return a fixed value of zero.

When the performance counters are enabled, mcycle/h has a width of 64 bit, but the
width of all the other performance counters can be configured to be between 33 and 64
bit. Also the amount of performance registers can be changed from 8 to 32. A minimum
of 8 is required because the first 6 are reserved for the events specified in Table 3.7.
These registers will also be set to zero on reset and won’t read an arbitrary value. Since
the events for the counters are implementation specific the mhpmevent3-mphmevent31
registers have a fixed value of zero.

3.3.2.12. Machine Timer Registers (mtime and mtimecmp)

The 64-bit mtimeh and mtimecmp registers are split up into the 32-bit memory mapped
registers mtime / mtimeh and mtimecmp / mtimecmph. The upper 32-bit of mtime and
mtimecmp are the mtimeh and mtimecmph registers.
The mtime/h registers provide a real-time counter with 64-bit precision running at

a constant frequency. The timebase is defined in the pntimebase register described in

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 15

CHAPTER 3. INSTRUCTION SET REFERENCE

Interrupt Exception Code Description
1 0 Not implemented
1 1 Not implemented
1 2 Not implemented
1 3 Not implemented
1 4 Not implemented
1 5 Not implemented
1 6 Not implemented
1 7 Machine timer interrupt
1 8 User external interrupt
1 9 Supervisor external interrupt
1 10 Not implemented
1 11 Machine external interrupt
1 ≥12 Reserved
0 0 Instruction address misaligned
0 1 Not implemented
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Not implemented
0 6 Store/AMO address misaligned
0 7 Not implemented
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Not implemented
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 14 Not implemented
0 15 Store/AMO page fault
0 16 ParaNut CoPU exception
0 ≥17 Reserved

Table 3.6.: Machine cause register (mcause) values after trap.

Section 3.3.5.17. A 64-bit timer compare register is provided by the mtimecmp/h registers.
A timer interrupt occurs when the mtime/h register contains a value greater than or equal
to the value in the mtimecmp/h register.

63 32 31 0
mtimeh mtime

32 32

Figure 3.9.: Machine time register (memory-mapped control register).

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 16

CHAPTER 3. INSTRUCTION SET REFERENCE

Register Description/Event
mhpmcounter3/h Number of ALU operations since reset. (ADDI, SLTI, SLTIU,

XORI, ORI, ANDI, SLLI, SRLI, SRAI, ADD, SUB, SLL, SLT,
SLTU, XOR, SRL, SRA, OR, AND)

mhpmcounter4/h Number of LOAD operations since reset. (LB, LH, LW, LBU, LHU)
mhpmcounter5/h Number of STORE operations since reset. (SB, SH, SW)
mhpmcounter6/h Number of JUMP/BRANCH operations since reset. (JAL, JALR,

BEQ, BNE, BLT, BGE, BLTU, BLGEU)
mhpmcounter7/h Number of SYSTEM/SPECIAL operations since reset. (FENCE,

ECALL, EBREAK, MRET, CSRRW, CSRRS, CSRRC, CSRRWI,
CSRRSI, CSRRCI)

Table 3.7.: Fixed events of the first four counters.

63 32 31 0
mtimecmph mtimecmp

32 32

Figure 3.10.: Machine time compare register (memory-mapped control register).

3.3.3. Supervisor Control and Status Registers
This chapter describes the RISC-V supervisor-level Control and Status Registers listed
in 3.8, which were originally specified in RISC-V Volume II [3]. Note that these registers
are only available when the ParaNut was configured to implement supervisor mode.

Number Privilege Name Description
Supervisor Trap Setup

0x100 SRW sstatus Supervisor status register.
0x104 SRW sie Supervisor interrupt-enable register.
0x105 SRW stvec Supervisor trap handler base address.

Supervisor Trap Handling
0x140 SRW sscratch Scratch register for supervisor trap handlers.
0x141 SRW sepc Supervisor exception program counter.
0x142 SRW scause Supervisor trap cause.
0x143 SRW stval Supervisor bad address or instruction.

Supervisor Protection and Translation
0x180 SRW satp Supervisor address translation and protection.

Table 3.8.: Currently allocated supervisor RISC-V CSRs

In the following subsections, all registers and their flags are listed and explained if the
ParaNut ’s behaviour differs from the RISC-V specification. All registers may only be
accessed on the CePU. Trying to access them from a CoPU raises an Illegal Instruction
exception.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 17

CHAPTER 3. INSTRUCTION SET REFERENCE

3.3.3.1. Supervisor Status Register (sstatus)

The flags listed in Figure 3.11 represent a subset of mstatus and are implementes as
defined in [3]. WPRI indicates that the bits are not yet implemented and should be
preserved on writes for forward compatibility reasons.

31 19 18 17 9 8 7 6 5 4 2 1 0
WPRI SUM WPRI SPP WPRI SPIE WPRI SIE WPRI

13 1 8 1 2 1 3 1 2

Figure 3.11.: Supervisor-mode status register (sstatus) of the ParaNut .

3.3.3.2. Supervisor Cause Register (scause)

The scause register behaves analogous to mcause and may contain values listed in Ta-
ble 3.6.

SXLEN-1 SXLEN-2 0
Interrupt Exception Code (WLRL)

1 SXLEN-1

Figure 3.12.: Supervisor Cause register scause.

3.3.3.3. Supervisor Address Translation and Protection (satp) Register

The field MODE enables virtual addressing as explained in [5]. In contrast to [3], field
PPN is only 20 bits wide.

31 30 20 19 0
MODE WPRI PPN

1 11 20

Figure 3.13.: RV32 Supervisor address translation and protection register satp.

3.3.4. Unprivileged/User Control and Status Registers
This chapter describes the RISC-V unprivileged(/user)-level Control and Status Registers
listed in 3.9, which were originally specified in RISC-V Volume II [3]. Note that these
registers are only available when the ParaNut was configured to implement user mode.
The registers listed in Table 3.9 are the only registers of the user-mode with functunality.
The rest of the user mode registers are listed in Chapter 3.3.6 and have no functunality
but are implemented to prevent errors when using OpenOCD.
Note: In the SystemC Code the prefix "u" is used for CSR registers of user mode. This
was done to prevent a collison between the C function "time" and the CSR "time" while

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 18

CHAPTER 3. INSTRUCTION SET REFERENCE

maintaing a uniform naming convention for all user mode CSRs. When trying to access
the registers with assembler instructions the names from table 3.9 or the addresses can
be used.

Number Privilege Name Description
Unprivileged/User Counter/Timers RO

0xC00 URO cycle Cycle counter for RDCYCLE instruction.
0xC80 URO cycleh Upper 32 bits of cycle, RV32 only.

Table 3.9.: Currently allocated unprivileged/user RISC-V CSRs

In the following subsections, all registers and their flags are listed and explained if the
ParaNut ’s behaviour differs from the RISC-V specification. All registers may only be
accessed on the CePU. Trying to access them from a CoPU raises an Illegal Instruction
exception.

3.3.4.1. Cycle Registers (cycle/cycleh)

These registers are shadow registers of mcycle and mcycleh and are a read-only variant of
the registers for use in user mode. For a description of the registers see Chapter 3.3.2.11.

3.3.5. ParaNut -Specific Control and Status Registers
Table 3.10 shows the ParaNut -specific registers, which are used to query the hardware
configuration and to read the status of the CPU array. All registers are only available on
a CePU, except for pncoreid, which can also be read by CoPUs. All of these registers
are available in any configuration of the ParaNut , regardless of which privilege modes
are implemented.

3.3.5.1. ParaNut CPU group select (pngrpsel)

The pngrpsel register is an MXLEN-bit read-write register formatted as shown in Fig-
ure 3.14. It only takes legal values (illegal values are ignored) and selects the group of 32
CPUs on which the ParaNut CSRs that work on one bit per CPU (pnce, pnlm, pnxsel,
pnm2cp, pnx) function. On ParaNut systems with fewer than 32 CPUs this register will
only read and hold a value of zero. On systems with more than 32 CPUs pngrpsel should
be checked/set before reading or writing these CSRs.

31 0
pngrpsel (WARL)

32

Figure 3.14.: ParaNut CPU group select (pngrpsel).

3.3.5.2. Supervisor Trap Vector Base Address Register (stvec)

Currently, the lowest two bits are fixed to zero, which indicates that all traps set the
program counter to BASE+4.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 19

CHAPTER 3. INSTRUCTION SET REFERENCE

Number Privilege Name Description
ParaNut Machine R/W (Non-Standard R/W)

0x7C0 MRW pncache ParaNut Cache Control register.
ParaNut User R/W (Non-Standard R/W)

0x841 URW pncause ParaNut CoPU trap cause ID.
0x842 URW pnepc ParaNut CoPU exception program counter.
0x8C0 URW pngrpsel ParaNut CPU group select.
0x8C1 URW pnce ParaNut CPU enable register.
0x8C2 URW pnlm ParaNut CPU linked mode register.
0x8C3 URW pnxsel ParaNut CoPU exception select register.

ParaNut Machine RO (Non-Standard RO)
0xFC0 MRO pnm2cp ParaNut CPU capabilities register
0xFC1 MRO pnx ParaNut CoPU exception pending.
0xFC4 MRO pncacheinfo ParaNut cache information.
0xFC5 MRO pncachesets ParaNut number of cache sets.
0xFC6 MRO pnclockinfo ParaNut clock speed information.
0xFC7 MRO pnmemsize ParaNut memory size.
0xFC8 MRO pnece ParaNut exception chip enable.
0xFC9 MRO pntimebase ParaNut machine timer timbease.

ParaNut User R (Non-Standard R)
0xCD0 URO pncpus ParaNut number of CPUs.
0xCD4 URO pncoreid ParaNut core ID. Can be accessed by CoPUs

Table 3.10.: Currently allocated ParaNut -specific CSRs

SXLEN-1 2 1 0
BASE[SXLEN-1:2] (WARL) Fixed to 0 (WARL)

SXLEN-2 2

Figure 3.15.: Supervisor trap vector base address register (stvec).

3.3.5.3. ParaNut CPU enable register (pnce)

The pnce register is an MXLEN-bit read-write register formatted as shown in Figure 3.16.
It only takes legal values (WARL). Each bit corresponds to one CPU, bit 0 represents
the CePU. By writing into this register, the CePU can activate or deactivate CoPUs. By
reading the register, the CePU can determine whether the CoPU is actually (in)active
(enabled/halted). Both activation and deactivation may take some time until the CoPU
reaches a stable state. On deactivation by the CePU the CoPU is guaranteed to finish
it’s current instruction.
After deactivation the CPU will be in Mode 0. For CPUs with capability ≥ 2 this means
their IFU is reset and upon activation they will start execution at the reset vector address.
In systems with more than 32 CPUs the pngrpsel register must be used to control CoPUs
with core ID > 31.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 20

CHAPTER 3. INSTRUCTION SET REFERENCE

31 0
pnce (WARL)

32

Figure 3.16.: ParaNut CPU enable register (pnce).

3.3.5.4. ParaNut CPU linked mode register (pnlm)

The pnlm register is an MXLEN-bit read-write register formatted as shown in Figure 3.17.
It only takes legal values (WARL). Each bit corresponds to one CPU and bit 0 represents
the CePU. If the bit is set for CoPU, the CoPU is in linked state (Mode 1). If the bit is
unset, it is in unlinked state (Mode 2 or 3). By writing into this register, the CePU can
switch the mode of the CoPUs. Mode switching is allowed only if the CoPU is inactive
and not presently activated. If a bit is changed in the PNLM register and the respective
PNCE bit is 1, undefined behavior may result.
In systems with more than 32 CPUs the pngrpsel register must be used to control CoPUs
with core ID > 32.

31 0
pnlm (WARL)

32

Figure 3.17.: ParaNut CPU linked mode register (pnlm).

3.3.5.5. ParaNut CoPU exception select register (pnxsel)

The pnxsel register is an MXLEN-bit read-write register formatted as shown in Fig-
ure 3.17. It only takes legal values (WARL). Each bit corresponds to one CPU and bit
0 represents the CePU. By writing into this register, the CePU can select which CoPUs
exception information can be read from the pnepc and pncause CSRs. Only one bit
should be set at any time to avoid unwanted behavior.
In systems with more than 32 CPUs the pngrpsel register must be used to control CoPUs
with core ID > 31.

31 0
pnxsel (WARL)

32

Figure 3.18.: ParaNut CoPU exception select register (pnxsel).

3.3.5.6. ParaNut Cache control register (pncache)

The pncache register is an MXLEN-bit read-write register formatted as shown in
Figure 3.19. It only takes legal values (WARL).

The DEN field enables (1) or disables (0) the use of the cache for data access.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 21

CHAPTER 3. INSTRUCTION SET REFERENCE

The IEN field enables (1) or disables (0) the use of the cache for data access.

31 2 1 0
Reserved DEN IEN

29 1 1

Figure 3.19.: ParaNut Cache control register.

Writing to these registers does not trigger any flush or write-back operation. Hence,
when disabling the cache, it must be flushed or written back by software using the
CFLUSH(A) or CWB(A) instructions listed in Section 3.2.6 if the cache may con-
tain modified data.

3.3.5.7. ParaNut number of CPUs (pncpus)

The pncpus register is an MXLEN-bit read-only register formatted as shown in Fig-
ure 3.20. It holds the number of CPUs (including the CePU).

31 0
pncpus

32

Figure 3.20.: ParaNut number of CPUs (pncpus).

3.3.5.8. ParaNut CPU capabilities register (pnm2cp)

The pnm2cp register is an MXLEN-bit read-only register formatted as shown in Fig-
ure 3.21. Each bit corresponds to one CPU. If the bit is set, the respective CPU supports
Mode 2 (thread mode) or higher. If unset, the respective CPU supports only Mode 0
(halt) and Mode 1 (linked). Bit 0 represents the CePU and must be set in every imple-
mentation.
In systems with more than 32 CPUs the pngrpsel register must be used to read the
capabilities of CoPUs with core ID > 31.

31 0
pnm2cp

32

Figure 3.21.: ParaNut CPU capabilities register (pnm2cp.

3.3.5.9. ParaNut CoPU exception pending (pnx)

The pnx register is an MXLEN-bit read-only register formatted as shown in Figure 3.22.
Each bit corresponds to one CPU. It is written by hardware on trap entry. If a bit is set,
the represented CoPU encountered an exception and awaits handling.
In systems with more than 32 CPUs the pngrpsel register must be used to read the
pending state of CoPUs with core ID > 31.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 22

CHAPTER 3. INSTRUCTION SET REFERENCE

31 0
pnx
32

Figure 3.22.: ParaNut CoPU exception pending (pnx).

3.3.5.10. ParaNut CoPU trap cause ID (pncause)

The pncause register is an MXLEN-bit read-write register formatted as shown in
Figure 3.23. It holds the cause of exception of the CoPU selected by pnxsel and
pngrpsel. The CSR only holds legal values as defined in mcause.

31 0
pncause

32

Figure 3.23.: ParaNut CoPU trap cause ID (pncause).

3.3.5.11. ParaNut CoPU exception program counter (pnepc)

The pnepc register is an MXLEN-bit read-write register formatted as shown in Fig-
ure 3.24. It holds the exception program counter of the CoPU selected by pnxsel and
pngrpsel. The CSR only holds legal values as defined in mepc.

31 0
pnepc
32

Figure 3.24.: ParaNut CoPU exception program counter (pnepc).

3.3.5.12. ParaNut cache information register (pncacheinfo)

The pncacheinfo register is an MXLEN-bit read-only register formatted as shown in
Figure 3.25. It holds information about the cache properties.

31 8 7 3 2 1 0
Cache Banks Arbiter Method WAYS REPM

24 5 2 1

Figure 3.25.: ParaNut cache information register (pncacheinfo).

The REPM field indicates the cache replacement method. A Least Recently Used
(LRU) replacement strategy is used if it is set, else random replacement is in action.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 23

CHAPTER 3. INSTRUCTION SET REFERENCE

The WAYS field shows the associativity of the cache. Valid values are 0, 1 and 2
corresponding to 1, 2 and 4 way associativity.

The Arbiter Method field encodes the used method during arbitration of cache and
bus accesses. It is a signed number. On positive values a round-robin arbitration that
switches every 2value clocks is used. On negative values a pseudo-random arbitration
based on Linear Feedback Shift Registers (LSFR) is used.

The Cache Banks field holds the number of cache banks.

The overall size of the available cache can be calculated as:
pncachesets ∗ Cache Banks ∗ 4 Bytes.

3.3.5.13. ParaNut number of cache sets register (pncachesets)

The pncachesets register is an MXLEN-bit read-only register formatted as shown in
Figure 3.26. It holds the number of cache sets.

31 0
pncachesets

32

Figure 3.26.: ParaNut number of cache sets register (pncachesets).

The overall size of the available cache can be calculated as:
pncachesets ∗ Cache Banks ∗ 4 Bytes.

3.3.5.14. ParaNut clock speed information register (pnclockinfo)

The pnclockinfo register is an MXLEN-bit read-only register formatted as shown in
Figure 3.27. It holds the clock speed in Hz set at compile or synthesis time.

31 0
pnclockinfo

32

Figure 3.27.: ParaNut clock speed information register (pnclockinfo.

3.3.5.15. ParaNut memory size register (pnmemsize)

The pnmemsize register is an MXLEN-bit read-only register formatted as shown in
Figure 3.28. It holds the memory size set at compile or synthesis time.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 24

CHAPTER 3. INSTRUCTION SET REFERENCE

31 0
pnmemsize

32

Figure 3.28.: ParaNut memory size register (pnmemsize).

3.3.5.16. ParaNut exception CPU enable (pnece)

The pnece register is an MXLEN-bit read-only register formatted as shown in Figure 3.29.
It stores the value of pnce before execution of the exception or interrupt process as
described in 3.4.

31 0
pnece
32

Figure 3.29.: ParaNut exception chip enable (pnece).

3.3.5.17. ParaNut machine timer timebase (pntimebase)

The pntimebase register is an MXLEN-bit read-only register formatted as shown in
figure 3.30. It holds the machine timer timebase in µs set at compile or synthesis time.

31 0
pntimebase

32

Figure 3.30.: ParaNut machine timer timebase (pntimebase).

3.3.5.18. ParaNut core ID register (pncoreid)

The pncoreid register is an MXLEN-bit read-only register formatted as shown in
figure 3.31. It is the only register accesible from CoPUs. This is required to initiate
LinkedMode.

31 0
pncoreid

32

Figure 3.31.: ParaNut core ID register (pncoreid).

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 25

CHAPTER 3. INSTRUCTION SET REFERENCE

3.3.6. Control and Status registers without implementation
Table 3.11 shows the registers that where implemented to comply with the RISC-V spec-
ification, they don’t have any functionality. This was done to prevent errors while using
OpenOCD with the ParaNut . Reading from these registers will return the value 0x0 and
writes to these registers will be ignorred.
Note: That the user mode CSR have the prefix "u" added in the SystemC Code. This
was done to prevent a collison between the C function "time" and the CSR "time" while
maintaing a uniform naming convention for all user mode CSRs.

Number Privilege Name Description
Supervisor RW

0x106 SRW scounteren Supervisor counter enable.
0x10A SRW senvcfg Supervisor environment configuration register.
0x5A8 SRW scontext Supervisor-mode context register.

Machine R/W
0x306 MRW mcounteren Machine counter enable.
0x310 MRW mstatush Additional machine status register, RV32 only
0x30A MRW menvcfg Machine environment configuration register.
0x31A MRW menvcfgh Additional machine env. conf. register, RV32 only.
0x320 MRW mcounterinhibit Machine counter-inhibit register.
0x323 MRW mhpmevent3 Machine performance-monitoring event selector.
0x324 MRW mhpmevent4 Machine performance-monitoring event selector.

...
0x33F MRW mhpmevent31 Machine performance-monitoring event selector.
0x7A0 MRW tselect Debug/Trace trigger register select.
0xB09 MRW mhpmcounter9 Machine performance-monitoring counter.

...
0xB1F MRW mhpmcounter31 Machine performance-monitoring counter.
0xB89 MRW mhpmcounter9h Upper 32 bits of mhpmcounter9, RV32 only.

...
0xB1F MRW mhpmcounter31h Upper 32 bits of mhpmcounter31, RV32 only.

User RO
0xC01 URO time Timer for RDTIME instruction.
0xCD2 URO instret Instructions-retired counter for RDINSTRET instruction.
0xCD3 URO hpmcounter3 Performance-monitoring counter.
0xCD4 URO hpmcounter4 Performance-monitoring counter.

...
0xC1F URO hpmcounter31 Performance-monitoring counter.
0xC81 URO timeh Upper 32 bits of time , RV32 only.
0xC82 URO instreth Upper 32 bits of instret, RV32 only.
0xC83 URO hpmcounter3h Upper 32 bits of uhpmcounter3, RV32 only.
0xC84 URO hpmcounter4h Upper 32 bits of uhpmcounter4, RV32 only.

...
0xC9F URO hpmcounter31h Upper 32 bits of uhpmcounter31, RV32 only.

Machine RO
0xF15 MRO mconfigptr Pointer to configuration data structure .

Table 3.11.: CSRs without functionality

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 26

CHAPTER 3. INSTRUCTION SET REFERENCE

3.4. Exceptions
Table 3.6 lists the exceptions supported by the ParaNut architecture. At the moment,
only those classified as implemented can occur in the CePU. In a CoPU of mode 2 the
same exceptions may arise, excluding the ParaNut CoPU exception, which is used to
signal to the CePU that an exception occured in one of the CoPUs.

If an exception occurs in the CePU, the following steps are performed:

1. Trap information is saved to the following registers:
• The address of the current instruction (PC) for all cores each in their mepc
• The enable ParaNut CPU enable register 3.16 in pnece

• The appropriate cause in mcause

• The current value of the pnx input port in pnx

• Interrupts are disabled by writing the value of MIE to MPIE and setting MIE
to zero in mstatus

2. The CePU triggers and waits for all CoPUs (enabled/linked or not) to change into
Mode 0 (halt) after they finish their current instruction.

3. Execution is continued at the address saved in the mtvec register.

4. Execution of the exception handler

5. The exception handler finishes by using the MRET instruction which continues
execution at the address saved in mepc.

The change in execution mode in step 2 is visible to the programmer through the
pnce or pnlm CSRs. Writing to these registers will influence/change the execution
mode of the CoPUs immediately.
This allows for simultaneous saving/restoring of the current context and is required
for task-switching. In this case the old value can be read from pnece and saved to
pnce, which will re-enable the CoPUs. No additional shadow register is required for
pnlm as it can be written/read while only the CePU is running.
Please note that this means, that pnece will need to be saved to pnce as part of the
exception handler to continue execution.

If an exception occurs inside a Mode 2 CoPU, the following steps are performed:

1. The CoPU halts itself and signals an exception to the CePU.

2. The CePU finishes it’s current instruction and starts the exception handling proce-
dure as described above with the special CoPU exception cause (see Table 3.6).

3. The CePU triggers and waits for all CoPUs (enabled/linked or not) to change into
their exception state after they finish their current instruction.

4. Execution is continued at the address saved in the mtvec register.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 27

CHAPTER 3. INSTRUCTION SET REFERENCE

5. Execution of the exception handler
• By reading pnx the exception handler can determine on which CoPU(s) an

exception occurred and after setting the pnxsel CSR the cause and PC of the
selected CoPU can be read from the pncause and pnepc.

6. The exception handler finishes by using the MRET instruction which continues
execution at the address saved in mepc.

If an exception occurs inside a Mode 1 CoPU, the following steps are performed:

1. If any of the CoPUs is in linked mode (Mode 1), all Mode-1-CoPUs and the CePU
must be designed such that they either all complete their current instruction or all
of them perform a roll back. If this is not ensured, the interrupted code is not
restartable.

2. The CoPU halts itself and signals an exception to the CePU.

3. The CePU starts the exception handling procedure as described above with the
special CoPU exception cause (see Table 3.6).

4. The CePU triggers and waits for all CoPUs (enabled/linked or not) to change into
their exception state after they finish their current instruction.

5. Execution is continued at the address saved in the mtvec register.

6. Execution of the exception handler
• By reading pnx the exception handler can determine on which CoPU(s) an

exception occurred and after setting the pnxsel CSR the cause and PC of the
selected CoPU can be read from the pncause and pnepc.

7. The exception handler finishes by using the MRET instruction which continues
execution at the address saved in mepc.

If an interrupt occurs the following steps are performed (MIE == 1):

1. The CePU and CoPUs all complete their current instruction.

2. The CePU halts itself and waits for the CoPUs to halt as well (according to the
MIE flag set in mstatus).

3. The CoPUs halt by respecting the interrupt enable flags as set in the CePU (prior
to them being disabled).

4. Execution is continued at the address saved in the mtvec register.

5. Execution of the trap handler

6. The trap handler finishes by using the MRET instruction which continues execution
at the address saved in mepc.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 28

CHAPTER 3. INSTRUCTION SET REFERENCE

If an interrupt occurs the following steps are performed (MIE == 0):

1. The appropriate interrupt pending bit is set.

2. If an exception handler finishes by using the MRET instruction, MPIE is restored
and MIE is used accordingly. This means if MIE and the pending bit is set (or the
situation which sets the pending bit is unresolved), the trap handler will be entered
once more. Otherwise execution at the address saved in mepc will continue.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 29

4. Libparanut

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 30

5. Operating Environments

5.1. Bare Metal and newlib

5.2. FreeRTOS

5.3. Linux
Linux as one of the most common operating system kernels is already partially starting
on the ParaNut . It uses OpenSBI as a bootloader. A pre-configured setup can be found
at sw/linux.

Before compiling the project, make sure that the config.mk file of the ParaNut has
the correct values set. The A and M extensions (CFG_EXU_M_EXTENSION,
CFG_EXU_A_EXTENSION) have to be enabled and the number of privilege levels
(CFG_PRIV_LEVELS) must be set to 3. The TLB (CFG_MMU_TLB_ENABLE) can be
enabled for faster execution.

Running

$ cd sw/linux

$ make

clones the Linux Kernel and OpenSBI as well as downloads a compiler toolchain
to the external folder. Note that either PARANUT_TOOLS or directly PN_EXTERNAL (to
the external folder) has to be set. It then copies a prepared Linux Config inside and
compiles a very simple version of the Linux Kernel. A device tree paranut.dts is
generated from the template paranut-template.dts by filling in values from the config,
including the memory address or the mtimer location and frequency. The device tree as
well as the Kernel is combined with OpenSBI and compiled into a single ELF file.

To run it in the simulator, use

$ make sim

You will first see the OpenSBI boot messages appear before the Linux Kernel be-
gins to start. Note that this process might take a very long time in the simulator.

For running in hardware, a separate refdesign is provided at systems/linux.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 31

CHAPTER 5. OPERATING ENVIRONMENTS

5.4. Rust
Author: Abdurrahman Celep

5.4.1. Why Rust with Paranut?
The Rust language is a modern and growing programming language, which is similar to
C and C++. In contrast to other programming languages, memory safety is guaranteed.
Rust provides security features that focus on preventing program errors that lead to
memory access errors or buffer overflows. To accomplish this, it uses a borrow checker
to validate references. Without garbage collection, Rust can guarantee memory safety
and has optional reference counting. This makes Rust more robust against security
vulnerabilities introduced in programming.

With the help of this new language, it is possible to write programs for the ParaNut
project that can guarantee reliable code and secure memory access.

5.4.2. Working with Rust
To work with the programming language, it is important to look at Rust Cross-
Compilation for RISC-V. The main aspects are: how rustc works and what configura-
tions are necessary to target RISC-V when compiling Rust programs.

The support platforms, also called targets, are separated in three tiers. Each of
the tiers has a different set of guarantees. The ParaNut uses the riscv32i-unknown-none-
elf platform, which is currently in Tier 2. It means that target and toolchain are available
and will build guaranteed.

More information about the platforms can be found on the website [7].

5.4.3. Build the Project
For the ParaNut processor, the target riscv32i-unknown-non-elf is needed. To use the
platform in a Rust project, target support for RISC-V must be added with:

1 $ rustup target add riscv32i-unknown-none-elf

The target support is also needed in the nightly channel.

1 $ rustup +nightly target add riscv32i-unknown-none-elf

There are two ways to build Rust project. It is possible to work with and with-
out a Cargo environment.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 32

CHAPTER 5. OPERATING ENVIRONMENTS

5.4.3.1. Working without Cargo Enviroment

Working without Cargo Environment is an option to build a small Rust project, which
only creates an elf file and gives up all features of the Cargo Environment like build, run,
doc, clean, etc.

Configuration

The first step is to create a Rustfile.

1 $ touch main.rs

More details about the main.rs file, can be found in Chapter 5.4.4.

To compile main.rs and get the elf file, it is important to give the rustc compiler
flags:

1 $ rustc +nightly --target=riscv32i-unknown-none-elf\\
2 --extern=$(PATH_TO_COMPILER_BUILTINS)
3 -Clink-args=$(C_FLAGS) -C linker=riscv64-unknown-elf-gcc\\
4 main.rs -o $(elf_data_name)

With the –extern flag an extern crate will be included in the Rust project. The
crate compier-builts is needed to fix remaining link errors. Usually the path for the
compiler-builtins is .cargo/registry/src/github.com*/compiler_builtins-*. Please
note, that the nightly channel is needed for this crate.

5.4.3.2. Working with Cargo Enviroment

Cargo is a package manager for Rust, which makes development much easier. The
package manager downloads the Rust package’s dependencies, compiles them, creates
distributable packages, and uploads them to creates.io, the Rust community’s package
registry.[8]

Configuration

First, a project must be created:

1 $ cargo new hello_rust

It will give the following directory structure:

rusty-risc
Cargo.toml
src

main.rs

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 33

CHAPTER 5. OPERATING ENVIRONMENTS

In Chapter 5.4.4 main.rs is presented in more details.

To use the RISC-V toolchain, the Cargo Environment has to be configured. For
the configuration a direcory named .cargo containing a file named config.toml has to
be created.

rusty-risc
.cargo

config.toml
Cargo.toml
src

main.rs

The config.toml contains the configuration for the package manager. When a
project is being built, cargo searches all parent directories and the current directory for
configuration files.[9]

For the ParaNut project the config.toml file looks like:

1 [target.riscv32i-unknown-none-elf]
2 runner = $(RISCV_SIMULATOR)
3 rustflags = [
4 ... // $(C_FLAGS)
5]
6

7 linker = "riscv64-unknown-elf-gcc"
8

9 [build]
10 target = "riscv32i-unknown-none-elf"

To use the riscv32i-unknown-none-elf platform support, the default target has to
be overwritten in the [build] table. This is followed by setting up the platform target
in table [target.riscv32i-unknown-none-elf]. Inside the table the linker, runner and
Rustflags can be defined.

The extern crate compiler-builtins have to be include in Cargo.toml.

1 [dependencies]
2 compiler-builtins = <VERSION_NUMBER>

Now the Rust project can be built with:

1 $ cargo +nightly build

After the build, the elf file will be shown in target/riscv32i-unknown-none-
elf/debug/<elf-file> and it can be run with a RISC-V simulator. In case of the
ParaNut project use pn-sim.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 34

CHAPTER 5. OPERATING ENVIRONMENTS

5.4.4. The main Program Example
This is what main.rs should look like

1 #![no_std]
2 #![no_main]
3

4 ...
5

6 [no_mangle]
7 pub extern fn main(_nargs: i32, _args: *const *const u8) -> i32 {
8

9 /* inside the main function*/
10

11 // Exit with a return status of 0.
12 0
13 }

It is important to note that the program will run on bare metal, so the standard
Rust library and standard main function should not be used [10]. They can be disabled
with #![no_std] and #![no_main]. The no_mangle means, that any function
exported by Rust that is used outside of Rust must be instructed not be mangled by
the compiler. This is because the Rust compiler mangles symbol names differently than
native code linkers expect [11]. In the next step, a custom main function is defined,
whose return value is zero.

To define the behavior of panic! in a no_std application, it is important to cre-
ate a panic_handler. This ensures that when problems occur, the system is kept in a
loop.[12]

1 use core::panic::PanicInfo;
2

3 ...
4

5 #[panic_handler]
6 fn panic(_panic: &PanicInfo<’_>) -> ! {
7 loop {}
8 }

5.4.4.1. Print out Hello ParaNut

To get a terminal output, a special crate is needed (bindgen_stdio_crate). For
this purpose an internal crate was created, which can be found in the folder /sw/in-
tern_rust_crate. Please note that this folder contains only crates that are not
published on the crate.io website. (If you want create new internal crates, feel free to do
it in this directory) Also please be sure that bindgen is also installed. (See more about
bindgen in [13])

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 35

CHAPTER 5. OPERATING ENVIRONMENTS

It should be mentioned that, for rust projects with and without cargo, the inte-
gration of crates is handled differently.

5.4.4.2. Working without Cargo Enviroment

In this example only an extra flag (–extern) is added to the command to tell the
compiler that a crate is being used.

1 $ rustc --target=riscv32i-unknown-none-elf\\
2 --extern=stdio=libbindgen_stdio_sys.rlib\\
3 -Clink-args=$(C_FLAGS) -C linker=riscv64-unknown-elf-gcc\\
4 main.rs -o $(elf_data_name)

Please note, that the rlib-Data has to be generated by compiling the crate. (An example
can be found on the Website [14])

The main.rs would look like this:

1 ...
2 pub extern fn main(_nargs: i32, _args: *const *const u8) -> i32 {
3

4 stdio::printf(b"Hello ParaNut!\n\0" as *const u8 as *const i8);
5

6 ...
7 }

The use command to work with crates is not needed.

5.4.4.3. Working with Cargo Enviroment

To be able to work with the crate, the desired crates must be written in the Cargo.toml.

1 [dependencies]
2 bindgen-stdio-sys = {path = "../rust_intern_crates/bindgen-stdio-sys"}

Under the dependencies the crate bindgen_stdio_crate is defined, which is located
in the path /rust_intern_crates/bindgen-stdio-sys. After that, the crate can be
used in the main.rs.

1 use bindgen_stdio_sys as stdio;
2

3 ...
4

5 pub extern fn main(_nargs: i32, _args: *const *const u8) -> i32 {
6 stdio::printf(b"Hello ParaNut!\n\n\0" as *const u8 as *const i8);
7 ...
8 }

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 36

CHAPTER 5. OPERATING ENVIRONMENTS

5.4.4.4. Using the Simulator

The generated elf file can be run in the simulator pn_sim. Information on building and
running the simulator can be found in Chapter A.1.1. Finally, a HelloParaNut should
appear in the terminal.

1 /*without Cargo Enviroment*/
2

3 $ $PARANUT_HOME/hw/sim/pn-sim <elf file>
4

5 /*with Cargo Enviroment*/
6

7 $ $PARANUT_HOME/hw/sim/pn-sim /target/riscv32i-unknown-none-elf/debug/<elf file
>

8 }

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 37

6. Tools

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 38

CHAPTER 6. TOOLS

6.1. ParaNut : Config Creator - User Manual
The Config creator is a tool that allows the user to modify/create the configuration file
of the ParaNut processor.

Additional features:

• Saving presets of the configuration

• Approximating resource usage

6.1.1. Starting page

Figure 6.1.: Screenshot of the starting page

1. Select desired theme. You can choose between light and dark theme.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 39

CHAPTER 6. TOOLS

2. Select your desired hardware to continue with the configuration progress.

3. Choose between predefined configurations and a manual configuration of the
ParaNut. Beginner mode: Contains a list of already „ready-to-use“ configurations
and your saved presets. Expert mode: Contains a step by step configuration process,
where every module can be adjusted by certain parameters.

4. These are links leading to an overview article of the ParaNut project from the
embedded world exposition in 2020 and to the EES-ParaNut project GitHub.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 40

CHAPTER 6. TOOLS

6.1.2. Beginner mode

Figure 6.2.: Screenshot of the beginner mode page

1. Each section represents either a predefined system or one of your saved presets.

2. Pressing the „Cancel“ button will redirect you to the starting page.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 41

CHAPTER 6. TOOLS

6.1.3. Expert mode

Figure 6.3.: Screenshot of the expert mode page

1. The manual configuration page has a navigation bar, which is used to jump between
the individual modules.

2. Each module has its own parameters which reveal tips and explanations when hov-
ering over them.

3. The configuration process consists of three different input types:

1 Checkboxes, which decide whether content should be added.
2 Comboboxes, which have drop-downs containing the different options to choose
from.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 42

CHAPTER 6. TOOLS

3 Slider, which allows to select an accurate value.
4 Simple integer entries, resembling the desired value of the associated parameter.
(invalid entries will return warnings or errors.)

4. The hardware resource utilization progress bar resembles the used hardware resource
capacity relative to its maximum resources.
Pressing the „Apply “ button will commit your entered values, while jumping to the
overview page. Pressing the „Cancel “ button will terminate the manual configura-
tion process and you will be sent to the starting page.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 43

CHAPTER 6. TOOLS

6.1.4. Overview page
This page is the last stop before the finished configuration file. On this page all your
manually selected or predefined options will be summarized, giving you the chance to
make changes.

Figure 6.4.: Screenshot of the overview page

1. Each different module has ist own section with an „Edit“ button, which leads to the
corresponding module page in the manual configuration.

2. The „Cancel“ button will lead you back to the starting page.

3. Your configuration will be saved as a preset. From now on it will be shown in your
Beginner mode section of the tool.

4. Your configuration will be saved as a finished config.mk file on your computer.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 44

Bibliography
[1] Gundolf Kiefer, Michael Seider, and Michael Schaeferling: “ParaNut – An Open,

Scalable, and Highly Parallel Processor Architecture for FPGA-based Systems”, Pro-
ceedings of the embedded world Conference, Nuernberg, Feb. 24-26, 2015

[2] Andrew Waterman, Krste Asanović, RISC-V Foundation: “The RISC-V Instruction
Set Manual Volume I: User-Level ISA”, Document Version 2.2, 2017, www.riscv.org

[3] Andrew Waterman, Krste Asanović, RISC-V Foundation: “The RISC-V Instruc-
tion Set Manual Volume II: Privileged Architecture”, Document Version 1.10, 2017,
www.riscv.org

[4] John. L. Hennessy, David A. Patterson: “Computer Architecture: A Quantitative
Approach”, 5th edition, Elsevier, 2012

[5] Christian H. Meyer, “A Memory Management Unit for the ParaNut”, 2022

[6] “The rustup book: 2.Concepts: 2.1.Channels”, https://rust-
lang.github.io/rustup/concepts/channels.html

[7] “The rustc book: 6.Platfrom Support”, https://doc.rust-lang.org/rustc/platform-
support.html

[8] “The Cargo book”, https://doc.rust-lang.org/cargo/

[9] “The Cargo book: 3.Cargo Reference: 3.6.Configuration”, https://doc.rust-
lang.org/cargo/reference/config.html

[10] “Embedonomicon: 1. The smallest #![no_std] program”, https://docs.rust-
embedded.org/embedonomicon/smallest-no-std.html

[11] “The Embedded Rust Book: 10.Interoperability: 10.2.A little Rust with your C”,
https://docs.rust-embedded.org/book/interoperability/rust-with-c.html

[12] “The Rustonomicon: 12.Beneath std: 12.1.#[panic_handler]”, https://doc.rust-
lang.org/nomicon/panic-handler.html

[13] “crate.io: bindgen”,https://crates.io/crates/bindgen

[14] “Geeksforgeeks: Rust - Creating a Library”, https://www.geeksforgeeks.org/rust-
creating-a-library/

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 45

A. Appendix

A.1. Building software for the ParaNut processor
Prerequisites:

• The RISC-V GCC toolchain.

• Built SystemC simulation (paranut_tb).

The ParaNut repository contains tested software in the sw folder. A good starting
point for developing your own software would be the hello_newlib example. It contains
following files:

1 #include <stdio.h>
2 #include <unistd.h>
3

4 int main () {
5 int n;
6

7 for (n = 1; n <= 10; n++)
8 printf ("%2i. Hello World!\n", n);
9 return 0;

10 }

Listing A.1: hello_newlib.c, simple application using the newlib

1 # Root of ParaNut repository or local project
2 PARANUT ?= ../..
3

4 # Flash target options
5 PN_FIRMWARE_ELF ?=
6 PN_SYSTEM_HDF ?=
7 PN_SYSTEM_BIT ?=
8

9 # Configuration options
10 CROSS_COMPILE ?= riscv64-unknown-elf
11

12 CC := $(CROSS_COMPILE)-gcc
13 GXX := $(CROSS_COMPILE)-g++
14 OBJDUMP := $(CROSS_COMPILE)-objdump
15 OBJCOPY := $(CROSS_COMPILE)-objcopy
16 GDB := $(CROSS_COMPILE)-gdb
17 AR := $(CROSS_COMPILE)-ar
18 SIZE := $(CROSS_COMPILE)-size

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 46

APPENDIX A. APPENDIX

19

20 ELF = hello_newlib
21 SOURCES = $(wildcard *.c)
22 OBJECTS = $(patsubst %.c,%.o,$(SOURCES))
23 HEADERS = $(wildcard *.h)
24

25 PN_SYSTEMS_DIR = $(PARANUT)/systems
26 RISCV_COMMON_DIR = $(PARANUT)/sw/riscv_common
27

28 CFG_MARCH ?= rv32i
29

30 CFLAGS = -O2 -march=$(CFG_MARCH) -mabi=ilp32 -I$(RISCV_COMMON_DIR)
31 LDFLAGS = $(CFLAGS) -static -nostartfiles -lc $(RISCV_COMMON_DIR)/startup.S $(

RISCV_COMMON_DIR)/syscalls.c -T $(RISCV_COMMON_DIR)/paranut.ld
32

33 # Software Targets
34 all: $(ELF) dump
35

36 $(ELF): $(OBJECTS)
37 $(CC) -o $@ $^ $(LDFLAGS)
38

39 %.o: %.c $(HEADERS)
40 $(CC) -c $(CFLAGS) $<
41

42

43 # ParaNut Targets
44 .PHONY: sim
45 sim: $(ELF)
46 +$(MAKE) -C $(PARANUT)/hw/sim pn-sim
47 $(PARANUT)/hw/sim/pn-sim -t0 $<
48

49 # Generic Flash targets (set PN_* accordingly)
50 .PHONY: flash flash-bit
51 flash: bin
52 pn-flash -c -p $(ELF).bin $(PN_SYSTEM_HDF) $(PN_FIRMWARE_ELF)
53

54 flash-bit: bin
55 pn-flash -c -b $(PN_SYSTEM_BIT) -p $(ELF).bin $(PN_SYSTEM_HDF) $(

PN_FIRMWARE_ELF)
56

57

58 # Special System Flash targets for testing inside the source repository
59 .PHONY: flash-%
60 flash-%: bin
61 if [! -d $(PN_SYSTEMS_DIR)]; then echo; echo "INFO: The flash targets are

only for testing inside the source repository!"; echo; exit 1; fi
62 pn-flash -c -p $(ELF).bin $(PN_SYSTEMS_DIR)/$*/hardware/build/system.hdf $(

PN_SYSTEMS_DIR)/$*/hardware/firmware/firmware.elf
63

64 flash-%-bit: bin

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 47

APPENDIX A. APPENDIX

65 if [! -d $(PN_SYSTEMS_DIR)]; then echo "INFO: The flash targets are only for
testing inside the source repository!"; exit 1; fi

66 pn-flash -c -b $(PN_SYSTEMS_DIR)/$*/hardware/build/system.bit -p $(ELF) \
67 $(PN_SYSTEMS_DIR)/$*/hardware/build/system.hdf $(PN_SYSTEMS_DIR)/$*/hardware/

firmware/firmware.elf
68

69

70 # Misc Targets
71 .PHONY: dump
72 dump: $(ELF).dump
73 $(ELF).dump: $(ELF)
74 $(OBJDUMP) -S -D $< > $@
75

76 .PHONY: bin
77 bin: $(ELF).bin
78 $(ELF).bin: $(ELF)
79 $(OBJCOPY) -S -O binary $< $@
80

81 .PHONY: clean
82 clean:
83 rm -f *.o *.o.s *.c.s $(ELF) $(ELF).bin $(ELF).dump

Listing A.2: Makefile, for building software with the newlib

The Makefile requires the correct path to the top-level paranut folder PN_PARANUT set
correctly to include the following ParaNut specific files:

• startup.s: ParaNut startup file containing the reset routine.

• syscalls.c: Implementation of the system calls required by the newlib (libgloss).

• encoding.h: Defines and other helpers.

• paranut.ld: Linker script for the ParaNut memory model.

By default the parameter CFG_MARCH is set to rv32i (only RV32I instructions). These
can be changed according to the configuration made in the global config file.

To build the hello_newlib application follow these steps (provided you are currently
in the top level directory of the paranut repository):

$ cd sw/hello_newlib

$ make

Example for a build with different configuration:

$ make CFG_MARCH=rv32im

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 48

APPENDIX A. APPENDIX

A.1.1. Run the application in the SystemC simulation
To run the application in the SystemC simulation run the paranut_tb with the built
ELF file as parameter:

$ $PARANUT_HOME/hw/sim/pn-sim hello_newlib

Or use the sim target of the Makefile:

$ make sim

To get a GTK-Wave compatible trace file run the SystemC simulation with the -t
parameter and a number bigger than 0:

$ $PARANUT_HOME/hw/sim/pn-sim -t1 hello_newlib

• -t0: No trace file will be generated.

• -t1: Top level bus and paranut signals.

• -t2: First level of internal module signals (EXU, MEMU, IFU, LSU, ...).

• -t3: Second level of internal modules (MExtension, ReadPorts, WritePorts, ...)

A.2. Installing GDB
This chapter explains how to install a version of GDB in which the text user interface(tui)
is enabled.
Prerequisites:

• libncurses-dev to be able to compile gdb with tui

• The packages listed here: https://github.com/riscv-collab/
riscv-gnu-toolchain

• a symbolic link python that points to python3

Information:

• Buildtime with the -j4 option: 22 minutes

• Size required for the repository: 11 GB

• Size required for installed Toolchain: 1.4 GB

• Installs the complete riscv-gnu-toolchain an the multilib libraray

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 49

https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain

APPENDIX A. APPENDIX

To do this follow these instructions:
Install libncurses.
$ sudo apt install libncurses-dev

If the "python" command is not available on your system you need to create a symbolic
link named "python" pointing to the "python3" executable.

Download the source code from the GitHub repository.
$ git clone https://github.com/riscv/riscv-gnu-toolchain

Change directory into the newly downloaded repository.
$ cd riscv-gnu-toolchain

Checkout the Version "2023.01.04" with the following command
$ git checkout 2023.01.04

Configuring the toolchain with the following command (remove the \from the com-
mand):

$./configure --prefix=/home/<username>/toolchain \

--with-multilib-generator="rv32i-ilp32--;rv32im-ilp32--;rv32ima-ilp32--"
Note that the given prefix path is only a sugestion and can be changed by the user.
Compile and install the toolchain.
$ make

Now you have installed a complete toolchain from which only GDB is needed. To
only use the GDB from the compiled toolchain you can rename the GDB version from
the old toolchain and create a symbolic link that points to the new version in its place.
Alternatifly you can call this version of GDB by it’s full path.

A.3. Installing OpenOCD
This chapter explains how to install a OpenOCD version which supports the switching of
memory access modes.
Information:

• Buildtime with the -j4 option: 1 minute

• Size required for the repository: 227 MB

• Size required for installed Toolchain: 23 MB

• Installs OpenOCD in Version 0.12.0

To do this follow these instructions:
Download the source code from the GitHub repository.
$ git clone https://git.code.sf.net/p/openocd/code openocd-code

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 50

APPENDIX A. APPENDIX

Change directory into the newly downloaded repository.
$ cd openocd-code

Checkout the Version "v0.12.0" with the following command
$ git checkout v0.12.0

Configuring the toolchain with the following commands:
$./bootstrap

$./configure --prefix=/home/<username>/openocd --enable-remote-bitbang
Note that the given prefix path is only a sugestion and can be changed by the user.

Compile and install the toolchain.
$ make

$ make install

To use the newly installed version of OpenOCD you need to add the folder of the
executable to the systems path variable. You can either add, the following command, to
your .bashrc or run it before using OpenOCD.

$ export PATH="<Path to OpenOCD bin folder>:$PATH"

A.4. Using GDB with the SystemC simulation
Prerequisites:

• The RISC-V compatible OpenOCD (See https://github.com/riscv/
riscv-tools) for build instructions.

• The RISC-V GCC toolchain.

• Built SystemC simulation (paranut_tb).

• Built RISC-V application (with debug symbols and without optimization) (A.1).

The ParaNut SystemC simulation is compatible with the RISC-V External Debug
Support Version 0.13. Thus it can be debugged using the GNU Debugger (GDB) of
the RISC-V toolchain. Since the ParaNut simulation acts like real hardware we use
OpenOCD to communicate with GDB.

Run the SystemC simulation with the ELF file you want to debug and the -d parameter
to tell it to wait for a OpenOCD connection:

Run the command for the local repository from the root of the repository.
e.g. local repository for hello_newlib:
$ /<Path to Reposetory>/hw/sim/pn-sim -d <Path to Executable>/hello_newlib

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 51

https://github.com/riscv/riscv-tools
https://github.com/riscv/riscv-tools

APPENDIX A. APPENDIX

e.g. installed:
$ $PARANUT_HOME/bin/pn-sim -d hello_newlib

In a new shell start OpenOCD and use the tools/etc/openocd-sim.cfg configuration
file:

Currently you have to use the OpenOCD built with the RISC-V tools. If you have not
added the $RISCV/bin folder to your PATH or have a different version installed start
OpenOCD with the full path name to avoid errors. E.g. /opt/riscv/bin/openocd

Run the command for the local repository from the root of the repository.
local repository:
$ openocd -f /<Path to Reposetory>/tools/etc/openocd-sim.cfg

installed:
$ openocd -f $PARANUT_TOOLS/etc/openocd-sim.cfg

To prevent error messages regarding csr register access please uncomment the riscv
expose_csrs line for the right privivleg level. In the file openocd-sim.cfg located
in tools/etc of the ParaNut repository

To use OpenOCD in a more efficent manner please install OpenOCD 0.12.0 as dis-
cribed in A.3 and uncomment the following line riscv set_mem_access abstract
progbuf in the openocd-sim.cfg file. Located in the folder tools/etc of the
ParaNut repository.

In yet another shell start the RISC-V GDB debug session:
For this you need to change into the directory containing the executable.
e.g for hello_newlib:

$ cd /<Path to Reposetory>/sw/hello_newlib

run gdb for hello_newlib:
$ riscv64-unknown-elf-gdb hello_newlib

Then connect to OpenOCD as remote target:

(gdb) target remote localhost:3333

Load the register configuration for the current privilege level:
Replace the x with the privilege level configured in config.mk
Note: This path to the file is given for the case that gdb was started in the root of the
repository. If GDB was not started in that folder you need to ajust the path

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 52

APPENDIX A. APPENDIX

(gdb) set tdesc filename /<Path to Reposetory>/tools/etc/gdb_csr_priv<x>.xml

Now you are able to use all standard GDB commands to debug the application:

(gdb) break main

(gdb) continue

(gdb) next

(gdb) print n

(gdb) help

Additionally when you installed GDB as discribed in A.2 then you can use commands
like the following to switch into the tui mode:

(gdb) layout regs

To reset the processor and start from the reset vector use following command:

(gdb) monitor reset halt

This will automatically reload the ELF file into the simulated memory.

A.5. Using and debugging the hardware
Prerequisites:

• The RISC-V compatible OpenOCD (See https://github.com/riscv/
riscv-tools) for build instructions.

• The RISC-V GCC toolchain.

• Supported FPGA board (e.g. Digilent Zybo, Digilent Zybo Z7-20)

• A JTAG debugger (e.g. Amontec JTAGkey)

• Built RISC-V application (with debug symbols and without optimization) (A.1).

The ParaNut reference system located in the systems directory can be debugged using
a standard JTAG debugger. The ParaNut processor in this system is compatible with
the RISC-V External Debug Support Version 0.13. Thus it can be debugged using the
GNU Debugger (GDB) of the RISC-V toolchain.

Build the reference design for the hardware you are using:

$ cd systems/refdesign

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 53

https://github.com/riscv/riscv-tools
https://github.com/riscv/riscv-tools

APPENDIX A. APPENDIX

e.g. Digilent Zybo:
$ make build BOARD=zybo

e.g. Digilent Zybo Z7
$ make build BOARD=zybo_z7020

This will also build a firmware for the ARM core on these boards and a copy of the
hello_newlib software in to the software directory.
Connect the board to your PC and program the firmware, bitfile and RISC-V software

to the board by executing following command (see the Makefile to see the full command
using the pn-flash tool):

$ make -C systems/refdesign run

A console will stay running and showing the standard output of the ParaNut processor.
After a few seconds to invalidate the cache the ”Hello World” messages should be visible.

Connect the JTAG debugger outputs to the JD Pmod pin header on the boards as
shown in Table A.1. The table displays how the pins coming from the Amontec JTAGkey
should be connected, so JD10 is TDI of the ParaNut JTAG TAP and JD7 is its TDO.

VCC GND JD4 JD3 JD2 JD1
N.C. N.C. N.C. N.C. N.C. N.C.
VCC GND JD10 JD9 JD8 JD7
VREF GND TDO TCK TMS TDI

Table A.1.: JD Pmod Port JTAG pin connections for the Amontec JTAGkey

In a new shell start OpenOCD and use the tools/etc/openocd-board.cfg configura-
tion file if you use the Amontec JTAGkey (modify the configuration if you use a different
JTAG debugger):

Currently you have to use the OpenOCD built with the RISC-V tools. If you have not
added the $RISCV/bin folder to your PATH or have a different version installed start
OpenOCD with the full path name to avoid errors. E.g. /opt/riscv/bin/openocd

Run the command for the local repository from the root of the repository.
local repository:
$ openocd -f /<Path to Reposetory>/tools/etc/openocd-board.cfg

installed:
$ openocd -f $PARANUT_TOOLS/etc/openocd-board.cfg

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 54

APPENDIX A. APPENDIX

To prevent error messages regarding csr register access please uncomment the riscv
expose_csrs line for the right privivleg level. In the file openocd-board.cfg in
tools/etc of the ParaNut repository.

To use OpenOCD in a more efficent manner please install OpenOCD 0.12.0 as dis-
cribed in A.3 and uncomment the following line riscv set_mem_access abstract
progbuf in the openocd-board.cfg file. Located in the folder tools/etx of the
ParaNut repository.

In yet another shell start the RISC-V GDB debug session:

eg for hello_newlib
$ riscv64-unknown-elf-gdb /<Path to Reposetory>/refdesign/software/hello_newlib

Lastly connect to OpenOCD as remote target:

(gdb) target remote localhost:3333

Load the register configuration for the current privilege level:
Replace the x with the privilege level configured in config.mk located in the root of the
repository.
Note: This path to the file is given for the case that gdb was started in the root of the
repository. If GDB was not started in tht folder you need to ajust the path
E.g:

(gdb) set tdesc filename /<Path to Reposetory>/tools/etc/gdb_csr_priv<x>.xml

Now you are able to use all standard GDB commands to debug the application:

(gdb) break main

(gdb) continue

(gdb) next

(gdb) print n

(gdb) help

Additionally when you installed GDB as discribed in A.2 then you can use commands
like the following to switch into the tui mode:

(gdb) layout regs

Load the elf again through GDB:

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 55

APPENDIX A. APPENDIX

(gdb) load

To reset the processor and start from the reset vector use following command:

(gdb) monitor reset halt

A.6. Integrating your own hardware modules
Due to the permissive license of the ParaNut project, anyone is allowed to add modules.
In general, there are two ways to do so:
- Integrating an AXI compatible module to the SoC
- Extending the ParaNut architecture/hardware itself.

A.6.1. AXI compatible modules

A.6.2. Extending the ParaNut architecture/hardware
For simplification, all steps are explained with the CSR module as an example.

1. Develop your module and adapt the other modules according to your needs.

2. Integrate your SystemC module into the simulator (if developing in VHDL, you can
skip to step 4

• In the easiest case, you can instantiate a submodule in the parent module (sim-
ilar to the MMExtension submodule inside the ExU - see mextension.h/cpp
and exu.h/cpp). However, this inhibits the High Level Synthesis in case the
submodule and the parent module include the same header file

• For any other case, create a signal for each port of your new module in
paranut.h. Afterwards, instantiate the module in paranut.cpp and bind all
ports to their corresponding signal as well as all newly created ports in the
other modules.

3. High Level Synthesis (HLS)

• Copy a HLS script in sysc, e.g. exu.tcl, name it similar to your source file
(csr.tcl) and change the following parameters:
– open_project (the Vivado HLS project name and resulting folder; usually

the modules name prefixed by hls-: hls-csr)
– set_top (the module name, i.e. the SystemC class: MCsr)
– add_files (all source files: csr.cpp)

• The script will automatically be executed when creating the IP core. You may
also run the script manually by executing make copy-yourmodulesname (make
copy-csr)

• The resulting files of HLS are files are copied to the directory hw/rtl/vhdl/
and are usually prefixed with the the modules name (MCsr*.vhd)

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 56

APPENDIX A. APPENDIX

4. Now copy two new files in hw/rtl/vhdl/ similar to mcsr.vhd for the module wrap-
per and csr.vhd for the port declaration; adapt them to your module. This step
hides all ports behind a more convenient port declaration, usually named similar
to the module and prefixed with i for its input ports or an o for output ports
respectively (csri, csro).

5. In the file hw/bin/paranut.tcl, add all newly created files to the corresponding
section. Hint: add the results of the HLS (MCsr*.vhd) or any other VHDL files and
the two files from step 4 (mcsr.vhd, csr.vhd).

6. Connect all ports in hw/rtl/vhdl/paranut.vhd to each other.

The ParaNut Processor, Gundolf Kiefer et al., February 15, 2023 57

	Contents
	1 Introduction
	2 The ParaNut Architecture
	2.1 Instruction Set Architecture
	2.2 Structural Organisation
	2.3 Execution Modes and Capabilities
	2.4 SIMD Vectorization
	2.5 Multi-Threading

	3 Instruction Set Reference
	3.1 Privilege Levels
	3.2 Instructions
	3.2.1 Conditional Branches
	3.2.2 Load and Store Instructions
	3.2.3 Memory Ordering Instructions
	3.2.4 Control and Status Register Instructions
	3.2.5 Trap-Return Instructions
	3.2.6 ParaNut Instructions

	3.3 Control and Status Registers (CSR)
	3.3.1 Terminology and Conventions for CSR Field Specifications
	3.3.2 Machine-Level Control and Status Registers
	3.3.2.1 Machine Vendor ID Register (mvendorid)
	3.3.2.2 Machine Architecture ID Register (marchid)
	3.3.2.3 Machine Implementation ID Register (mimpid)
	3.3.2.4 Hart ID Register (mhartid)
	3.3.2.5 Machine Status Register (mstatus)
	3.3.2.6 Machine ISA Register (misa)
	3.3.2.7 Machine Interrupt Registers (mip and mie)
	3.3.2.8 Machine Trap Vector Base Address Register (mtvec)
	3.3.2.9 Machine Trap Delegation Registers (medeleg and mideleg)
	3.3.2.10 Machine Cause Register (mcause)
	3.3.2.11 Hardware Performance Monitor
	3.3.2.12 Machine Timer Registers (mtime and mtimecmp)

	3.3.3 Supervisor Control and Status Registers
	3.3.3.1 Supervisor Status Register (sstatus)
	3.3.3.2 Supervisor Cause Register (scause)
	3.3.3.3 Supervisor Address Translation and Protection (satp) Register

	3.3.4 Unprivileged/User Control and Status Registers
	3.3.4.1 Cycle Registers (cycle/cycleh)

	3.3.5 ParaNut -Specific Control and Status Registers
	3.3.5.1 ParaNut CPU group select (pngrpsel)
	3.3.5.2 Supervisor Trap Vector Base Address Register (stvec)
	3.3.5.3 ParaNut CPU enable register (pnce)
	3.3.5.4 ParaNut CPU linked mode register (pnlm)
	3.3.5.5 ParaNut CoPU exception select register (pnxsel)
	3.3.5.6 ParaNut Cache control register (pncache)
	3.3.5.7 ParaNut number of CPUs (pncpus)
	3.3.5.8 ParaNut CPU capabilities register (pnm2cp)
	3.3.5.9 ParaNut CoPU exception pending (pnx)
	3.3.5.10 ParaNut CoPU trap cause ID (pncause)
	3.3.5.11 ParaNut CoPU exception program counter (pnepc)
	3.3.5.12 ParaNut cache information register (pncacheinfo)
	3.3.5.13 ParaNut number of cache sets register (pncachesets)
	3.3.5.14 ParaNut clock speed information register (pnclockinfo)
	3.3.5.15 ParaNut memory size register (pnmemsize)
	3.3.5.16 ParaNut exception CPU enable (pnece)
	3.3.5.17 ParaNut machine timer timebase (pntimebase)
	3.3.5.18 ParaNut core ID register (pncoreid)

	3.3.6 Control and Status registers without implementation

	3.4 Exceptions

	4 Libparanut
	5 Operating Environments
	5.1 Bare Metal and newlib
	5.2 FreeRTOS
	5.3 Linux
	5.4 Rust
	5.4.1 Why Rust with Paranut?
	5.4.2 Working with Rust
	5.4.3 Build the Project
	5.4.3.1 Working without Cargo Enviroment
	5.4.3.2 Working with Cargo Enviroment

	5.4.4 The main Program Example
	5.4.4.1 Print out Hello ParaNut
	5.4.4.2 Working without Cargo Enviroment
	5.4.4.3 Working with Cargo Enviroment
	5.4.4.4 Using the Simulator

	6 Tools
	6.1 ParaNut : Config Creator - User Manual
	6.1.1 Starting page
	6.1.2 Beginner mode
	6.1.3 Expert mode
	6.1.4 Overview page

	Bibliography
	A Appendix
	A.1 Building software for the ParaNut processor
	A.1.1 Run the application in the SystemC simulation

	A.2 Installing GDB
	A.3 Installing OpenOCD
	A.4 Using GDB with the SystemC simulation
	A.5 Using and debugging the hardware
	A.6 Integrating your own hardware modules
	A.6.1 AXI compatible modules
	A.6.2 Extending the ParaNut architecture/hardware

